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Lecture 18 

Now that we've developed our approximation methods, we can turn to solving the 

helium atom.  As usual our Schrödinger equation is H  = E , where  

 H = -
2m
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Let’s begin by applying perturbation theory and see what we can learn from it. We are 

interested in particular in the ground state wavefunction.  WHAT IS OUR UNPERTURBED 

HAMILTONIAN? [
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 ].  The energy of an electron in a hydrogen-like system is 

given by  
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WHAT IS THE ENERGY OF THE GROUND STATE OF OUR UNPERTURBED SYSTEM? 
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WHAT IS OUR PERTURBATION? 
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WHAT IS THE EQUATION WE USE TO CALCULATE THE CORRECTION TO OUR ENERGY? 

 
0 12

ˆ
2

(0)* (0) (0)* (0)(1) eE = d = dH 4 r
    


    



 

 

115

When we plug in the zero order wavefunction we just worked out we get 
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So our total energy is E(0) + E = -2.75 
me

(4

4

0
2 2 ) 

.  Because this is an approximation, we 

expect that this energy will differ from the true energy.  In fact we find that the experimental 

value for this energy is EHe(exp) = -2.9033  
me

(4

4

0
2 2 ) 

.  Thus ignoring the second order 

and higher terms leads to an error of about 5%.  However, just including the second order 

correction improves the energy to -2.91 
me

(4

4

0
2 )

.  Using several orders of perturbation 

theory, we can improve the energy to within .01 % of the experimental value.   

Thus for Helium we can make the following observations. 

1) The first order correction is large, not small, since E(1) = .31 E(0). 

2) The error remaining after the first order correction is about 5%. 

3) If we go on to second order perturbation theory, the error is reduced to .2%. 

What conclusions can we draw from these observations?  The main conclusion 

we can draw at this point is that the helium wavefunction must be substantially different 

than the unperturbed wavefunctions we used to calculate their energies.  To see this 

remember that when we derived the formula for the first order correction, we assumed that 

we could write the energy and the wavefunction as 

 E = E(0) + E(1),  

where E(1) is small, and  

  = (0) + (1),  
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where (1) is small.  Since E(1) was not small, we can conclude that (1) was not small, 

and that therefore the helium atom ground state wavefunction is substantially different than 

two electrons in hydrogen-like 1s orbitals. 

Now let’s turn to the variational method.  First we write down our Hamiltonian,  

 H = -
2m
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Next we need to choose a trial function.  A logical choice is to use the product of two 

hydrogen-like 1s orbitals, since this would correspond to putting two electrons into the 

hydrogen-like 1s orbital (note that this is not the same as putting two electrons into a helium 

1s orbital).  If we write this out this gives us 
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Remember that in order to use the variational method, we need to choose a variational 

parameter, a parameter that we can vary in order to find the minimum energy for our trial 

function.  For this trial function we'll let the atomic number Z be our adjustable 

parameter.  Essentially what we're doing here is asking, "What if the nuclear charge that 

each electron sees is less than the actual charge?  What will this "effective nuclear charge" 

be?" 

When we plug this trial function into our formula for the energy E of our trial 

function,  
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we find that  
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  
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When we take the derivative with respect to Z, we find that the minimum energy we get 

for this trial function is when Z = 27/16, and is equal to -2.8477
me

(4

4

0
2 2 ) 

.  This is an 

error of about 2%, and is a pretty good result for a first try. 

 Remember that we said that when we allow Z to vary we are treating it as an 

effective nuclear charge.  The effective charge we calculated, 27/16 = 1.69, is 

substantially smaller than the actual nuclear charge of two.  What does it mean for the 

nucleus to have an effective charge smaller than its actual charge?  It means that the force 

that the nucleus exerts on the electron corresponds to that smaller charge.  To see why this 

makes sense let’s consider a picture of a helium atom.  At any given time we have two 

electrons in the vicinity of the nucleus at two different radii, r1 and r2.  In most positions of 

the electrons, they will both feel the full 

charge of +2 from the helium nucleus.  

Now suppose that the two electrons are 

lined up.  The electron at r1 sees the full 

charge of the nucleus, but the electron at 

r2 sees only a charge of + 1 because the 

other electron effectively cancels part of 

the charge.  We say that the first electron 

partially screens the second electron from the nucleus.  The reduced effective charge 

reflects the fact that there are a number of positions where one electron can screen the 

nucleus for the other.   
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Lecture 19 

Now I'd like to move along in the periodic table and calculate the ground state 

energy of lithium. When we started to do this for helium, we began with a trial function 

that put both electrons in 1s orbitals, He = 1s(1)1s(2).  It would seem reasonable to extend 

this to lithium and to say that its ground state consists of three electrons in 1s orbitals, Li 

= 1s(1)1s(2)1s(3).  We all know that we can't have three 1s electrons in the same atom.  

However, nothing we've developed at this point precludes such a ground state.  To 

understand why such a ground state cannot exist, we need to introduce a new physical 

property, the electron spin, and a new postulate of quantum mechanics, the Pauli Exclusion 

Principle. 

The evidence for this new property, the so-

called electron spin, came unexpectedly in an 

experiment performed in 1922 by Stern and Gerlach.  

In their experiment, they measured the magnetic 

states of silver atoms by passing a beam of silver 

atoms through a magnetic field. What did they 

expect to see?  First, realize that the magnetic field 

will interact only with the magnetic moments of the 

atoms.  Thus any effect of the magnetic field on the beam of atoms will be as a result of 

this magnet-magnet interaction.   

What happens if we pass a moving magnet through a magnetic field?  Suppose our 

magnetic field, B, is caused by a permanent magnet.  Such a magnet has two poles, a 

positive pole and a negative pole.  We'll put our magnet with the positive pole facing 
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downward.  Suppose that the traveling magnet has its negative pole facing upward.  When 

it interacts with the B field from the permanent magnet, it will be attracted, so its path will 

be deflected upward. 

 What if its positive pole is facing upward?  Because identical poles are interacting, 

the traveling magnet will be repelled and the beam will be deflected downward.  The size 

of the deflection depends on the orientation of the magnet passing through the field.  The 

attraction of two magnets is maximized when the positive and negative poles point directly 

at each other, and thus the upward deflection is maximized for this case.  The repulsion is 

maximized when the two positive poles point directly at each other, and thus the downward 

deflection is maximized for this case.  If the poles of the two magnets are at right angles to 

each other, there is no repulsion or attraction at all, and no deflection.  If the traveling 

magnet is pointing so its positive pole is somewhere between perpendicular and pointing 

directly at the other magnet, then the attraction will be somewhere between 0 and the 

maximum, and there will be a deflection somewhat less than the maximum. 

What do we expect to see for a beam of silver atoms?  The beam of atoms can be 

prepared so that all of the atoms are in the ground state of silver.  When silver atoms are in 

their ground state they are characterized by the same angular momentum 1/ 2( ( 1)L l l  .  

This angular momentum state determines the strength of the atom's magnetic moment.  The 

larger l is, the stronger the magnet is.  For every l there are 2l + 1 values of m.  These m 

values tell us which way the magnet is pointing.  An m value of +l will have the positive 

pole of the magnet as close as possible to the positive pole of the field, so we will have the 

maximum downward deflection of the beam of atoms.  All other positive m values will 

also result in a downward deflection, but to a lesser degree.  If the m value is zero, the 
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magnet will be perpendicular to the magnetic field, and there will be no deflection.  Finally 

if the m value is negative, the negative pole of the magnet will be facing the magnetic field, 

and the deflection will be upward.  The closer m is to - l, the stronger the deflection will 

be. 

Let’s predict what will happen to the 

beam if the atoms are prepared so that all of 

them have l = 0, l = 1, and l = 2.  If l = 0, there 

is only one m value, 0, and when the beam 

passes through the magnetic field it will be 

undeflected.  When l = 1 we have three 

possible m values, m = -1, 0, 1.  Those atoms 

with m = 1 will be deflected downward, those atoms with m = 0 will be undeflected, and 

those atoms with m = -1 will be deflected upward.  Thus a beam of atoms with l = 1 will 

be split into three beams when it passes into a magnetic field.  Lets consider l = 2.  WHAT 

ARE THE POSSIBLE M VALUES?  WHAT WILL HAPPEN TO A BEAM OF ATOMS WITH L = 2 WHEN 

THEY PASS THROUGH THE MAGNETIC FIELD? 

So what did Stern and Gerlach actually 

see?  When they passed their beam of silver 

atoms through the magnetic field it split 

into two components.  From our analysis 

above, we know that this can't be due to an l = 

0 state which would leave the beam 

completely undeflected , or to an l = 1 state 
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which would split the beam into three components.  Remember that there are 2l + 1 m 

states for each value of l.  We can use this to figure out the value of the angular momentum 

quantum number that leads to this strange behavior. Since we have two components, we 

can write  

2 = 2l + 1 

and therefore l = 1/2.  This has to be due to a new property since we already know that the 

l quantum number, which determines orbital angular momentum, is limited to the values l 

= 0, 1, 2, ....  Yet this new property must be due to some kind of angular momentum, 

since a magnetic moment results. 

In 1925, Wolfgang Pauli explained this behavior by postulating that an electron 

could exist in two states.  To label these states, Pauli postulated the existence of a fourth 

quantum number, ms, which we now call the spin quantum number.  This spin quantum 

number can only take on the values ms = 1/2 or -1/2.  

When Pauli introduced this quantum number, he had not yet given it an 

interpretation.  It was George Uhlenbeck and Samuel Goudsmit of the University of Leiden 

who identified these quantum numbers with intrinsic angular momentum states of the 

electron.  They are called spin states because they have the same magnitude no matter how 

fast the electron is traveling, so this can't be due to orbital motion.  If the electron were a 

classical object the only source of angular momentum other than orbital motion would be 

spinning, top like motions, hence the name spin.  We should be cautioned, however, against 

taking the name too literally.  The electron is not actually spinning.  Rather we should 

view ms as referring to the orientation of a magnetic moment intrinsic to the electron.  To 

clarify this point, Bohr has calculated that for a spinning electron to have the 



 

 

122

experimentally determined magnetic moment, it would have to spin at a speed many times 

greater than the speed of light, an impossibility.  Electron spin is a purely quantum 

phenomenon.  It has no classical analog.   

The way that we've introduced the electron spin quantum number may remind you 

of the Bohr hydrogen atom.  Remember that Bohr postulated the quantization of the orbital 

angular momentum rather than have it come as a solution to his equations.  This is rather 

unsatisfactory, because it doesn't yield much in the way of physical insight by relating the 

new phenomenon to fundamental principles.  And in fact, the Schrödinger and Heisenberg 

formulations of quantum mechanics cannot predict the existence of the electron spin. 

Fortunately for quantum mechanics, P.A.M. Dirac, in the 1930's, constructed a 

wave equation that combined the ideas of Schrödinger with Einstein's special relativity.  In 

short, Dirac postulated that electrons in orbitals with low values of n, especially in heavier 

atoms, but even in hydrogen, might be moving close to the speed of light.  According to 

Einstein’s Special Relativity, this means that their masses would be velocity dependent.  

Dirac rewrote the Schrödinger equation including the velocity dependence of the electron 

mass, and the result has since been named the Dirac equation.  This Dirac equation was 

immensely successful.  Not only did its solution include the electron spin quantum number, 

but it predicted the existence of positrons before they were first observed. 

How do we deal quantitatively with electron spin in our non-relativistic 

formulation of quantum mechanics?  The spin quantum number, ms, as the Stern-

Gerlach experiment showed, leads to an experimental observable, the orientation of 

the electron spin magnetic moment.  According to our postulates, any observable is the 

eigenvalue of an eigenvalue equation of the form 
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 A  = a,  

so we need to work backwards from our observables to define appropriate 

wavefunctions and operators.  We take the angular momentum eigenvalue equations for 

the hydrogen atom,  

 L Y = l(l+1)Yl
m

l
m2 2  

and  

 L Y = m Yz l
m

l
m  

as our model, and define spin angular momentum operators  S and Sz
2  and spin 

wavefunctions  and .  The wavefunction  is characterized by the equations 

 2 2ˆ 1 1
S = ( +1)

2 2
    

and  

 S = +
1

2
= m .z s    

which give the spin angular momentum squared and the spin angular momentum in the z 

direction, so the wavefunction  corresponds to an electron spin of 1/2.  The 

wavefunction  is characterized by the eigenvalue equations 

 S =
1

2
(

1

2
+1)2 2   

and  

 S = -
1

2
= m .z s    
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so the wavefunction  corresponds to an electron spin of -1/2.  Note that it is only the 

zS  operator that distinguishes between these two eigenfunctions.  The angular 

momentum of both states is the same, and is equal to  

 S = s(s+1)  3 4/  

The zS  operator, which distinguishes the two wavefunctions, corresponds to the 

orientation of the spin angular momentum relative to the z axis.   

Note that there is only one magnitude of the spin quantum number.  Remember 

that for problems like the harmonic oscillator or the rigid rotator, the wavefunction takes 

on classical behavior when the quantum number gets large.  Since the spin quantum 

number is limited to 1/2, it can never become large and electron spin can never behave 

classically.  To reiterate, electron spin is a purely quantum phenomenon.   

The final part of our definition of the spin wavefunctions is to state that the spin 

eigenfunctions  and  are orthonormal, i.e., that we can write 

 * *d = d = 1        

and  

 * *d = d = 0        

where d is called the spin variable, which again has no classical analog. 

We now can see how to combine these spin wavefunctions with our spatial 

wavefunctions.  The wavefunction will be a function of four variables, the usual spatial 

variables, r, , , and our new variable, the spin variable , so we write 

     nlmm nlmms s
= (r, , , )  
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Notice that the wavefunction is now labeled by four quantum numbers, the three spatial 

quantum numbers, n, l and m, and the new spin quantum number, ms.  This means that to 

be completely described, each wavefunction must contain some value of each of these 

four quantum numbers. 

We've already noted that this new property of electron spin is a strange one, very 

unlike the other dynamical properties we've studied, so it seems reasonable that it would 

be independent of other variables.  This is another way of saying that it should be separable, 

so we'll postulate this and write the complete wavefunction as a product of a spatial 

wavefunction, like our hydrogen-like orbitals, and a spin function.  For a wavefunction 

with ms = 1/2, we have      
nlm nlm= (r, , ) ( )1

2
, and for a wavefunction with ms = -1/2, 

we have nlm nlm= (r, , ) ( )1
2

      .  These complete one electron wavefunctions are 

called spin orbitals.  As an example, the 1s orbital is the ground state spatial orbital of a 

hydrogen-like atom.  The first two spin orbitals of the hydrogen-like atom are  

 100
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These spin orbitals are normalized and orthogonal. 
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Lecture 20 

Since the electron spin was first discovered because atoms showed an unexpected 

response to a magnetic field, it is logical that the energy of spin wavefunctions in a 

magnetic field will depend on the value of the electron spin quantum number.  Let's 

work out this energy difference. 

The magnetic moment of the electron is proportional to the spin angular 

momentum and is given by  

 s
e

e

= -
g e

2m
S  

This is identical to the equation for the orbital magnetic moment, with the exception of the 

constant ge, called the electron g factor and equal to 2.002322.  Note that the g factor 

slightly deviates from being exactly 2.  (This will be important later.) Because by 

convention any external field is along the z-axis, the important part of the magnetic moment 

is the z component, given by  

 
2

e
z z

e

g e
S

m
     

Sz is the component of the spin angular momentum in the z direction and is equal to ms.  

This means that we can rewrite the z component of the magnetic moment as  

 z
e

e
s e B s= -

g e

2m
m = -g m 


, 

where B  is again the Bohr magneton. The classical potential energy when we place this 

electron in a magnetic field of strength B along the z-axis is  

 V = g m Be B s  
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If we add this term to the Hamiltonian for a hydrogen atom in a magnetic field, our new 

Hamiltonian including electron spin becomes 

    H = H +
eB

2m
(L + g S ).

e
z e z0  

where H0  is the Hamiltonian for a hydrogen atom in the absence of an external field.  

When we apply perturbation theory to this problem we find that the energy eigenvalues 

now depend on three quantum numbers, n, m, and ms, and are now given by 

snlmm
e

e sE = -
me Z

2(4 n
+

eB

2m
(m+ g m ).

4 2

0
2 2 2 ) 


 

Note that the result of this new magnetic 

moment is to further split the hydrogen 

atom energy states.  Consider a 2s orbital 

first.  There is no effect on the energy due to 

the orbital angular momentum [Why?], but 

the presence of the spin angular momentum 

splits the state into two distinct energy levels.  

Now consider a 2p orbital.  In the absence of an external field the six 2p spin orbitals are 

degenerate.  Adding the effect of the orbital magnetic moment has the effect of splitting 

these into three energy levels for m = 1, 0 and -1.  Finally adding the effect of the electron 

spin splits each of these m values into two more distinct energies.  Note that although the 

state with m = 1 and ms = -1/2 appears to have the same energy as the state with m = -1 

and ms = +1/2, because the g factor is not exactly 2, these states have energies that are close 

to identical, but not exactly identical.  Such a situation is described as near degeneracy.  

Near degeneracy is important in crystal field theory, where weak ligand fields will split d-
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orbitals in two groups of two and three orbitals with different energies.  However, the 

occupancy of these orbitals will still be the same as for normal d-orbitals when the splitting 

is small compared to the thermal energies of the electrons. Similarly in this case, the two 

near degenerate states will have the same occupancy as long as the thermal energies of the 

electrons exceed the energy of the splitting (which because of the small difference between 

2 and ge will usually be the case.) 

When we introduced this new property of electrons, the spin, we claimed that it 

would allow us to eliminate a ground state for the lithium atom in which all three electrons 

were in the 1s orbital.  To accomplish this, the electron spin by itself is not sufficient - we 

need to add a new postulate, the Pauli Exclusion Principle.  In freshman chemistry, this 

is usually stated as “No two electrons in an atom can have the same values of all four 

quantum numbers, n, l, m, and ms..” 

This statement immediately helps us find ground state electron configurations.  For 

example, the lithium atom has three electrons.  The first electron will go into the orbital 

 1001
2
 = 1s.  The second electron will go into the orbital  100 1

2  = 1s.  The third electron 

can’t go into the 1s orbital or one of the quantum numbers would have to be repeated.  In 

order to decide in which orbital the next electron goes, we need to know the energies of the 

other orbitals in a multielectron atom.  The order of these is determined by a number of 

approximation methods that we have not yet covered, but they yield the following order 

for the first few atomic subshells starting with the lowest energy orbital: 1s, 2s, 2p, 3s, 3p, 

4s, 3d and 4p.  Note first that the energies depend on both the l and n quantum numbers for 

multielectron atoms, and that the order is not a simple as one might imagine or hope.  

However for Li with only three electrons, the identity of the next lowest orbital is easy to 
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understand, and so our third electron goes into  2001
2
 or 2s. (In the absence of an external 

electric or magnetic field the choice of α or β does not matter in an s orbital or in the case 

of a single electron in a subshell.) 

So you see that invoking this version of the Pauli exclusion principle results in 

a limitation of two electrons in a given orbital, and gives rise immediately to the bulk of 

the form of the periodic table.  Unfortunately, the ground state wavefunction for lithium 

which this version of the exclusion principle predicts, Li = 1s 1s 2s, has 

implications which are not supported by experiment.  To obtain a more correct ground state 

wavefunction we need to turn to a more fundamental form of the exclusion principle, which 

helps us to determine the form of multielectron wavefunctions as well.  We will present 

this form of the Pauli exclusion principle as a sixth postulate of quantum mechanics, but 

first we need to introduce a new idea, that of an antisymmetric wavefunction. 

To define what an antisymmetric wavefunction is let's go back to the helium atom.  

Using the arguments we just used for lithium, we can write the ground state wavefunction 

of helium as  

 (1,2) = 1s(1) 1s(2). 

In other words, we put electron 1 in a 1s orbital, and we put electron 2 in a 1s orbital.  

However, there's a problem with this because it implies that our two electrons are 

distinguishable, i.e., that there's some way to tell them apart.  In other words, we could 

write a different ground state wavefunction,  

 (2, 1) = 1s(2) 1s(1) 

Again, this implies that electrons 1 and 2 are distinguishable, because we are saying that 

we can tell which electron is in which spin state.  This is not the case.  Remember, that 



 

 

130

nothing in quantum mechanics is meaningful unless it is ultimately linked to an observable, 

and even if we had a microscope with sufficient resolution, we wouldn't see any label on 

the electrons telling us which was electron 1 and which was electron 2.  Unfortunately, this 

is not just a philosophical problem, because if we use our ground state wavefunction, as 

written above, as a variational trial function, the energies come out all wrong.  What we 

need to do is find a way to write the wavefunction so that it places an electron each in 

the 1s and 1s orbitals, and not specific electrons in each orbital. 

We do this by defining two new ground state wavefunctions that are linear 

combinations of the two above, 

 1(1,2) = (1,2) + (2,1) = 1s(1) 1s(2) + 1s(2) 1s(1) 

and  2(1,2) = (1,2) - (2,1) = 1s(1) 1s(2) - 1s(2) 1s(1). 

The electrons are indistinguishable in these two wavefunctions because they both 

contain both possible ground state configurations.  Because both configurations are 

included, it’s sort of like saying that we will always find one electron in the 1s spin orbital 

and one in the 1s spin orbital without specifying which is which. 

These two orbitals are not identical.  To see the difference lets interchange 

electrons 1 and 2 for each of them.  For 1,  

 1(2, 1) = 1s(2) 1s(1) + 1s(1) 1s(2) = 1s(1) 1s(2) + 1s(2) 1s(1) = 1(1,2). 

For this orbital, when we change the order of the electrons in the orbitals, the wavefunction 

remains completely unchanged.  We say that this wavefunction is symmetric to the 

interchange of electrons.  In contrast consider 2.  For this wavefunction, we have 

 2(2,1) = 1s(2) 1s(1) - 1s(1) 1s(2) = - (1s(1) 1s(2) - 1s(2) 1s(1)) = -2(1,2). 
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When we reverse the order of the electrons, the sign of the wavefunction changes.  We call 

such a wavefunction antisymmetric with respect to interchange of electrons. 

Now that we have defined these new terms, we are ready to state our sixth postulate, 

the most complete form of the Pauli Exclusion Principle.   

 Postulate Six 

All electronic wavefunctions must be antisymmetric under the exchange of two 

electrons.  

(This is actually true for all wavefunctions describing systems of Fermions, particles with 

½ integral spins, which also include protons and neutrons.)  According to this postulate, of 

the two wavefunctions that we've constructed for Helium, only the second occurs in nature.  

So the ground state of helium is  

 0(He) = 1s(1) 1s(2) - 1s(2) 1s(1). 

Note that when we write 1s, we are not here referring to hydrogen-like 1s orbitals, but the 

true 1s orbitals of He, calculated by the appropriate approximation methods.  

I know that this sixth postulate sounds strange and that it seems unconnected to 

physical reality, but in fact it gives rise to the Pauli exclusion principle as you learned it in 

general chemistry.  Since we know that the Pauli exclusion principle has been 

experimentally verified many times over, with the structure of the periodic table being only 

one example, we have ample proof that this odd postulate is valid. 

There is more direct evidence in support of this requirement for antisymmetric 

wavefunctions, and that is the nature of the first excited states of helium.  The lowest 

energy excited state wavefunction would be one in which one electron was in a 1s orbital 
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and one in a 2s orbital.  As was the case for the ground state, this can be written two 

different ways,  

 a(1,2) = 1s(1) 2s(2) 

and  b(2,1) = 1s(2) 2s(1). 

As in our discussion of the helium ground state, these two wavefunctions imply that the 

electrons are distinguishable, so we need to take linear combinations of the two, yielding 

 2(1,2) = 1s(1) 2s(2) + 1s(2) 2s(1) 

and  1(1,2) = 1s(1) 2s(2) - 1s(2) 2s(1). 

The wavefunction labeled 1 with an energy of -59.2 eV is lower in energy than 2, with 

energy  -58.4 eV, and thus 1 is the first excited state of helium.   

According to the Pauli exclusion principle, the overall wavefunction, including the 

electron spin, must be antisymmetric.  A useful fact here is that the symmetry of the product 

of two wavefunctions follows the rules 

 1) Symmetric x symmetric = symmetric 

 2) Antisymmetric x antisymmetric = symmetric 

 3) Antisymmetric x symmetric = symmetric x antisymmetric = antisymmetric. 

Since the first excited state wavefunction without the spin is antisymmetric, the spin 

functions that we add must be symmetric.  There are three possible symmetric spin 

functions that we can consider, (1) (2), in which both electrons have spin up, (1) (2), 

where both electrons have spin down, and ((1) (2) + (1) (2)) the symmetric state 

where both electrons have opposite spins.  Thus there are three different antisymmetric 

wavefunctions for this first excited state, 

 1a(1,2) = 2-1/2 (1s(1) 2s(2) - 1s(2) 2s(1)) (1) (2) 
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 1b(1,2) = 2-1/2 (1s(1) 2s(2) - 1s(2) 2s(1))((1) (2) + (1) (2)) 

and 1c = 2-1/2 (1s(1) 2s(2) - 1s(2) 2s(1)) (1) (2). 

Thus the first excited state of helium in the absence of external fields is triply degenerate.  

Because there are three different states with the same spatial wavefunction and the same 

energy, we call this a triplet state.  The difference between these states is the orientation 

of the angular momentum vector, so we should be able to observe a difference in energies 

when the helium atom is placed in a magnetic field.  As expected the first excited state 

splits into three states with different energies, with 1a having the highest energy, 1b 

having the intermediate energy, and 1c having the lowest energy. 

What about 2(1,2), the second excited state of helium?  Remember that its spatial 

wavefunction is symmetric.  To get an overall antisymmetric wavefunction including spin, 

we need to multiply by an antisymmetric spin wavefunction.  The only antisymmetric spin 

wavefunction for two electrons is ((1)(2) -(2) (1)).  Thus there is only one 

wavefunction, including spin, for the second excited state of He,  

 2(1,2) = (1s(1) 2s(2) + 1s(2) 2s(1)) ((1)(2) -(2) (1)). 

Since there is only one wavefunction that has the energy of the second excited state, the 

state is singly degenerate, and we call it a singlet state.  Thus in addition to the structure 

of the periodic table, our sixth postulate allows us to correctly predict the triplet and singlet 

natures of the first two excited states of helium.  


